P-Tech Reinforcement Learning
Other
Model Details
Model Summary The Shiny application incorporates a variety of reinforcement learning models, including Epsilon-Greedy, Upper Confidence Bound (UCB), and Thompson Sampling, which are implemented to handle decision-making tasks with an emphasis on balancing exploration and exploitation. These models are deployed in a user-friendly web interface, allowing users to interactively upload data, select parameters, and visualize the outcomes. The models are primarily designed for dynamic decision environments, such as multi-armed bandit problems.
Usage The models in this application can be utilized to analyze sequential decision-making problems. Users can upload datasets in CSV or Excel formats and configure parameters specific to each algorithm. Here’s a sample usage scenario:
Load necessary libraries
library(shiny) library(readxl)
Run the Shiny application
runApp('path_to_shiny_app_directory/')
Input files should contain columns that represent actions and rewards. Outputs from the models include selections of optimal actions based on the reinforcement learning algorithm employed.
System
This is a part of a larger Shiny-based system intended for interactive data analysis. The application requires R and associated packages like shiny, dplyr, and ggplot2. Outputs from the system can be used for further statistical analysis or integrated into decision-support tools.
Implementation requirements
The application is developed in R and runs on standard computing systems with no specific hardware acceleration. It is designed for interactive use, with most computational demands depending on the size of the input data and the complexity of the chosen reinforcement learning model.
Model Characteristics
Model initialization
All models are initialized within the app and run based on user-uploaded data. No pre-trained models are used; each session starts with model parameters set to their defaults, which can be adjusted by the user.
Model stats
Models implemented do not have a fixed size but are dynamically defined by the input data characteristics. There are no explicit details on latency as it largely depends on the user’s hardware and the complexity of the data provided.
Other details
The models operate without additional optimizations such as pruning or quantization. They are straightforward implementations aimed at educational and exploratory data analysis purposes.
Data Overview
Training data
The application does not train models on pre-existing datasets but allows users to upload their data. The data must be structured with at least two columns for actions and rewards. No pre-processing is provided within the app; users must ensure data cleanliness.
Demographic groups
There is no demographic-specific data handling or analysis within this application, as it is designed for general-purpose reinforcement learning tasks.
Evaluation data
Since the application is designed for interactive use, there is no fixed training/test/dev split. Users can control how they wish to use their data for experimentation.
Evaluation Results
Summary
The application allows for real-time evaluation based on user input data. Results are presented interactively through tables and plots that reflect the performance of the selected reinforcement learning strategy.
Subgroup evaluation results
No subgroup analysis is inherently provided, but users can segment their data as needed before uploading to the application for specific analyses.
Fairness
The models do not directly address fairness considerations as they do not include demographic or personally identifiable inputs.
Usage limitations
The main limitations are related to the size and cleanliness of the data the user provides. Large datasets may cause performance issues on less capable hardware. The application assumes that data inputs are correctly formatted and represent the problem space.
Ethics
No specific ethical considerations are discussed within the scope of this application. Users are responsible for ensuring that their use of the software complies with applicable ethical standards, especially when human-related decision-making is involved.
Model Files
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from tkinter import *
from math import *
#VISUALIZAR LA OPERACION EN LA PANTALLA
def btnClik(num):
global operador
operador=operador+str(num)
input_text.set(operador)
#CÃLCULO Y MUESTRA DE RESULTADOS.
def resultado():
global operador
try:
opera=str(eval(operador))
input_text.set(opera)
except:
input_text.set("ERROR")
operador = ""
#LIMPIEZA DE PANTALLA.
def clear():
global operador
operador=("")
input_text.set("0")
ventana=Tk()
ventana.title("CALCULADORA")
ventana.geometry("392x600")
ventana.configure(background="SkyBlue4")
color_boton=("gray77")
ancho_boton=11
alto_boton=3
input_text=StringVar()
operador=""
Salida=Entry(ventana,font=('arial',20,'bold'),width=22,
textvariable=input_text,bd=20,insertwidth=4,bg="powder blue",justify="right")
Salida.place(x=10,y=60)
#AÃADIR BOTONES.
#CREAMOS NUESTROS BOTONES
Button(ventana,text="0",bg=color_boton,width=ancho_boton,height=alto_boton,command=lambda:btnClik(0)).place(x=17,y=180)
Button(ventana,text="1",bg=color_boton,width=ancho_boton,height=alto_boton,command=lambda:btnClik(1)).place(x=107,y=180)
Button(ventana,text="2",bg=color_boton,width=ancho_boton,height=alto_boton,command=lambda:btnClik(2)).place(x=197,y=180)
Button(ventana,text="3",bg=color_boton,width=ancho_boton,height=alto_boton,command=lambda:btnClik(3)).place(x=287,y=180)
Button(ventana,text="4",bg=color_boton,width=ancho_boton,height=alto_boton,command=lambda:btnClik(4)).place(x=17,y=240)
Button(ventana,text="5",bg=color_boton,width=ancho_boton,height=alto_boton,command=lambda:btnClik(5)).place(x=107,y=240)
Button(ventana,text="6",bg=color_boton,width=ancho_boton,height=alto_boton,command=lambda:btnClik(6)).place(x=197,y=240)
Button(ventana,text="7",bg=color_boton,width=ancho_boton,height=alto_boton,command=lambda:btnClik(7)).place(x=287,y=240)
Button(ventana,text="8",bg=color_boton,width=ancho_boton,height=alto_boton,command=lambda:btnClik(8)).place(x=17,y=300)
Button(ventana,text="9",bg=color_boton,width=ancho_boton,height=alto_boton,command=lambda:btnClik(9)).place(x=107,y=300)
Button(ventana,text="Ï",bg=color_boton,width=ancho_boton,height=alto_boton,command=lambda:btnClik("pi")).place(x=197,y=300)
Button(ventana,text=",",bg=color_boton,width=ancho_boton,height=alto_boton,command=lambda:btnClik(".")).place(x=287,y=300)
Button(ventana,text="+",bg=color_boton,width=ancho_boton,height=alto_boton,command=lambda:btnClik("+")).place(x=17,y=360)
Button(ventana,text="-",bg=color_boton,width=ancho_boton,height=alto_boton,command=lambda:btnClik("-")).place(x=107,y=360)
Button(ventana,text="*",bg=color_boton,width=ancho_boton,height=alto_boton,command=lambda:btnClik("*")).place(x=197,y=360)
Button(ventana,text="/",bg=color_boton,width=ancho_boton,height=alto_boton,command=lambda:btnClik("/")).place(x=287,y=360)
Button(ventana,text="â",bg=color_boton,width=ancho_boton,height=alto_boton,command=lambda:btnClik("sqrt(")).place(x=17,y=420)
Button(ventana,text="(",bg=color_boton,width=ancho_boton,height=alto_boton,command=lambda:btnClik("(")).place(x=17,y=480)
Button(ventana,text=")",bg=color_boton,width=ancho_boton,height=alto_boton,command=lambda:btnClik(")")).place(x=107,y=480)
Button(ventana,text="%",bg=color_boton,width=ancho_boton,height=alto_boton,command=lambda:btnClik("%")).place(x=197,y=480)
Button(ventana,text="ln",bg=color_boton,width=ancho_boton,height=alto_boton,command=lambda:btnClik("log(")).place(x=287,y=480)
Button(ventana,text="C",bg=color_boton,width=ancho_boton,height=alto_boton,command=clear).place(x=107,y=420)
Button(ventana,text="EXP",bg=color_boton,width=ancho_boton,height=alto_boton,command=lambda:btnClik("**")).place(x=197,y=420)
Button(ventana,text="=",bg=color_boton,width=ancho_boton,height=alto_boton,command=resultado).place(x=287,y=420)
clear()
ventana.mainloop()
1 comments
Amazing